
A Fast Solver for Systems ofReaction-Di�usion EquationsM. Garbey,1 H. G. Kaper,2 and N. Romanyukha31 IntroductionIn this paper we present a fast algorithm for the numerical solution of systemsof reaction-di�usion equations,@tu+ a � ru = �u+ F (x; t; u); x 2 
 � R3; t > 0: (1)Here, u is a vector-valued function, u � u(x; t) 2 Rm, m is large, and thecorresponding system of ODEs, @tu = F (x; t; u), is sti�. Typical examplesarise in air pollution studies, where a is the given wind �eld and the nonlinearfunction F models the atmospheric chemistry.The time integration of Eq. (1) is best handled by the method of character-istics [1]. The problem is thus reduced to designing for the reaction-di�usionpart a fast solver that has good stability properties for the given time step anddoes not require the computation of the full Jacobi matrix.An operator-splitting technique, even a high-order one, combining a fastnonlinear ODE solver with an e�cient solver for the di�usion operator is lesse�ective when the reaction term is sti�. In fact, the classical Strang splittingmethod may underperform a �rst-order source splitting method [2]. The al-gorithm we propose in this paper uses an a posteriori �ltering technique tostabilize the computation of the di�usion term. The algorithm parallelizes well,because the solution of the large system of ODEs is done pointwise; however, theintegration of the chemistry may lead to load-balancing problems [3, 4]. TheTchebyche� acceleration technique proposed in [5] o�ers an alternative thatcomplements the approach presented here.To facilitate the presentation, we limit the discusssion to domains 
 that ei-ther admit a regular discretization grid or decompose into subdomains that ad-mit regular discretization grids. We describe the algorithm for one-dimensionaldomains in Section 2 and for multidimensional domains in Section 3. Section 4brie
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2 One-Dimensional DomainsConsider the scalar equation@tu = @2xu+ f(u); x 2 (0; �); t > 0: (2)We combine a backward Euler approximation in time with an explicit �nite-di�erence approximation of the di�usive term,3un+1 � 4un + un�12�t = 2Dxxun �Dxun�1 + f(un+1): (3)This scheme is second-order accurate in both space and time [6, 7, 8]. To analyzeits stability, we take the Fourier transform of the linear equation,3ûn+1 � 4ûn + ûn�12�t = �k(2ûn � ûn�1); (4)where �k = 2h�2(cos(hk)� 1), from which we obtain the stability condition2�th2 ����cos�k�N �� 1���� < 43 ; h = �N : (5)Thus we conclude that the time step must satisfy the constraint�t < 13h2: (6)However, this constraint is imposed by the high frequencies, which are poorlyhandled by second-order �nite di�erences anyway. For example, with centraldi�erences, the relative error for high-frequency waves cos(kx) with k � N cangrow at a rate of up to 9%. The idea is therefore to relax the constraint onthe time step by applying a �lter after each time step, which removes the highfrequencies but maintains second-order accuracy in space.2.1 FiltersBy a �lter of order p we mean an even function � : R ! R that satis�es theconditions (i) �(0) = 1, (ii) �(l)(0) = 0 for l = 1; : : : ; p � 1, (iii) �(�) = 0 forj�j � 1, and (iv) � 2 Cp�1(R).Theorem [9]. Let f be a piecewise Cp function with one point of discontinuity,�, and let � be a �lter of order p. For any point y 2 [0; 2�], let d(y) = minfjy�� + 2k�j : k = �1; 0; 1g. If f�N =P1k=�1 f̂k�(k=N )eiky, thenjf(y) � k=N j � CN1�p(d(y))1�pK(f) +CN1=2�pkf (p)kL2;where K(f) = p�1Xl=0(d(y))l jf (l)(�+)� f (l)(��)j Z 1�1 jG(p�l)l (�)j d�:In other words, a discontinuity of f leads to a Fourier expansion with an errorthat is O(1) near the discontinuity and O(N�1) away from the discontinuity.We must therefore apply a shift and extend to [0; 2�] before applying a �lter.2



2.2 The AlgorithmWe now describe the postprocessing algorithm that is to be applied after eachtime step. (We do not explicitly indicate the dependence of u on the time step,and we use the abbreviations u0 = u(0) and u� = u(�).)First, we apply a low-frequency shift,v(x) = u(x)� (�1 + �2 cos(x)); �1 = 12(u0 � u�); �2 = 12 (u0 + u�): (7)Then we extend v to (0; 2�), using the de�nitionv(2� � x) = �v(x); x 2 (0; �): (8)Thus, v is a 2�-periodic function in C1(0; 2�). Let v̂k be the kth coe�cient ofits Fourier expansion.Next, we apply an eighth-order �lter [9],�Nv(x) =Xk ��� kN � v̂keikx; (9)where�(�) = (35� 84y + 70y2 � 20y3)y4; y � y(�) = 12(1 + cos(��)): (10)Here, � is a stretching factor, � > 1. The correct choice of � follows from aFourier analysis of Eq. (5),� > �c = �cos(1� 2h2=(3�t)) : (11)The choice � = 12�c gives satisfactory results, but in principle one can computethe optimum value of � at each time step by monitoring the growth of thehigh-frequency waves that have not been completely �ltered out.Finally, we recover u from the inverse shift,u(x) = �Nv(x) + �1 + �2 cos(x): (12)The theorem quoted in the preceding section shows that the �ltering processmay a�ect the spatial accuracy of the method. Since the �lter is applied to a2�-periodic function that is C1 at the points xk = k�, k 2 Z, and C2 everywhereelse, the error is of the order of N�2 in the neighborhood of xk and N�3 awayfrom xk. In principle, we maintain therefore second-order accuracy in space aslong as � is of order one.If the solution is in C3(0; �) at each time level, we can improve the algorithmby replacing the �rst-order shift (7) by a third-order shift,v(x) = u(x)� 4Xj=1�j cos((j � 1)x); (13)3



such that the extension of v to a 2�-periodic function is in C3(0; 2�). The �rst-and third-order derivatives of v are zero at the points xk, and the second-orderderivative is approximately given byuxx(xk) � 3un+1(xk) � 4un(xk) + un�1(xk)2�t � f(un+1(xk)): (14)The coe�cients �j are found by solving a linear system of equations,�1 + �2 + �3 + �4 = u(0);�1 � �2 + �3 � �4 = u(�);��2 � 4�3 � 9�4 = uxx(0);�2 � 4�3 + 9�4 = uxx(�):The third-order shift improves the performance of the �lter for large � andallows for a larger time step.2.3 Numerical ResultsFigure 1 shows some accuracy results for Eq. (2), whereu(x; t) = cos(t)((x=�)4 + cos(3x)); x 2 (0; �); t > 0: (15)We observe a plateau for small time steps, when the second-order spatial er-
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Although the algorithm is based only on linear stability considerations, it isstill e�ective for systems of nonlinear reaction-di�usion equations. In Figure 2we present some results for a predator-prey system,@tu = @xxu+ au� buv; @tv = @xxv � cu� duv; x 2 (0; �); t > 0; (16)with a = 1:2, b = 1:0, c = 0:1, and d = 0:2. At these parameter values, the
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become even less than when no domain decomposition is used. Furthermore, theGibbs phenomenon tends to destabilize the algorithm. This phenomenon is aconsequence of the jump in the derivatives at the endpoints of the subdomains(second-order derivatives in the case of the �rst-order shift (7), fourth-orderderivatives in the case of the third-order shift (13)). Since the Gibbs phe-nomenon arises at the arti�cial interface and is damped away from it, an increaseof the overlap generally produces a composite signal u that has fewer oscillationsthan each of the piecewise (overlapping) components. One can therefore obtaingood results by adapting the size of the overlap. The larger the overlap, thelarger the time step that can be taken; see Figure 3.
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�rst step, we render the boundary condition in the x direction homogeneous,v(x; y) = u(x; y)� (�1(y) + �2(y) cos(x)); (19)�1(y) = 12 (g0(y) � g�(y)); �2(y) = 12 (g0(y) + g�(y)): (20)In the second step, we shift in the y direction,w(x; y) = v(x; y) � (�1(x) + �2(x) cos(y)); (21)�1(x) = 12 (v(x; 0)� v(x; �)); �2(x) = 12(v(x; 0) + v(x; �)): (22)The �nal step is the reconstruction step,u(x; y) = �Nw(x; y) + �1(y) + �2(y) cos(x) + �1(x) + �2(x) cos(y): (23)To make sure that no high-frequency waves remain, we �lter the high-frequencycomponents from the boundary conditions g with a procedure similar to (7){(12).It is much more di�cult to construct a high-order �lter similar to (13) intwo dimensions, because the second-order derivatives cannot be obtained fromthe PDE, as in the one-dimensional case (14). So far, we have used only the�rst-order shifts (19) and (21) in our numerical experiments. Nevertheless, thealgorithm allows for a signi�cant increase of the time step. We have also testedthe domain-decomposition version of the algorithm, using strip subdomains withan adaptive overlap, with good results.We note that the computation in each block can be done in parallel andthat the Jacobi matrix does not depend on the spatial variables. The arithmeticcomplexity of the algorithm is therefore relatively small. Also, the algorithm issuitable for multicluster architectures. Each block can be assigned to a cluster,and parallel fast sine transforms can be used for the �ltering process inside eachcluster. The cost of communication between blocks is minimal, since the schemeis similar to the communication scheme of the additive Schwarz algorithm.4 ConclusionIn this paper we have presented a postprocessing algorithm that stabilizes thetime integration of systems of reaction-di�usion equations when the di�usionterm is treated explicitly. The algorithm is easy to code and can be combinedwith domain-decomposition methods that use regular grids in each subblock.In future work, we will consider the performance of its parallel implementationand its robustness for large systems of reaction-di�usion equations with sti�chemistry, which arise in some air pollution models.References[1] O. Pironneau. Finite Element Methods for Fluids. Wiley, 1989.7
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